38 research outputs found

    enhancing indoor coverage by multi pairs copper cables the analog mimo radio over copper architecture

    Get PDF
    Nowadays, the majority of indoor coverage issues arise from networks that are mainly designed for outdoor scenarios. Outdoor networks, somewhat uncontrollably, may penetrate indoors with the consequence of coverage holes and outage issues, hence reducing network performances. Moreover, the ever-growing number of devices expected for 5G worsens this situation, calling for novel bandwidth-efficient, low-latency and cost-effective solutions for indoor wireless coverage. This is the focus of this article, which summarizes the content of my Ph.D. thesis by presenting an analog Centralized Radio Access Network (C-RAN) architecture augmented by copper-cable, possibly pre-existing, to provide dense coverage inside buildings. This fronthaul architecture, referred to as Analog MIMO Radio-over-Copper (AMIMO-RoC), is an extreme RAN functional-split-option: the all-analog Remote Radio Units take the form of tiny, simple and cheap in-home devices, and Base Band Unit includes also signals' digitization. The A-MIMO-RoC architecture is introduced in this article starting from demonstrating its theoretical feasibility. Then, the origin and evolution of A-MIMO-RoC are described step-by-step by briefly going through previous works based on numerical analysis and simulations results. Finally, the overall discussion is complemented by results obtained with a prototype platform, which experimentally prove the capability of A-MIMO-RoC to extend indoor coverage over the last 100–200 m. Prototype results thus confirm that the proposed A-MIMO-RoC architecture is a valid solution towards the design of dedicated 5G indoor wireless systems for the billions of buildings which nowadays still suffer from severe indoor coverage issues

    Latency reduction by dynamic channel estimator selection in C-RAN networks using fuzzy logic

    Get PDF
    Due to a dramatic increase in the number of mobile users, operators are forced to expand their networks accordingly. Cloud Radio Access Network (C-RAN) was introduced to tackle the problems of the current generation of mobile networks and to support future 5G networks. However, many challenges have arisen through the centralised structure of C-RAN. The accuracy of the channel state information acquisition in the C-RAN for large numbers of remote radio heads and user equipment is one of the main challenges in this architecture. In order to minimize the time required to acquire the channel information in C-RAN and to reduce the end-to-end latency, in this paper a dynamic channel estimator selection algorithm is proposed. The idea is to assign different channel estimation algorithms to the users of mobile networks based on their link status (particularly the SNR threshold). For the purpose of automatic and adaptive selection to channel estimators, a fuzzy logic algorithm is employed as a decision maker to select the best SNR threshold by utilising the bit error rate measurements. The results demonstrate a reduction in the estimation time with low loss in data throughput. It is also observed that the outcome of the proposed algorithm increases at high SNR values

    VirtRAN: An SDN/NFV-Based Framework for 5G RAN Slicing

    No full text
    corecore